求:

limxtan31xarctan2x43sin3x3arcsin2019x\lim_{x \to \infty} \frac{tan^3{\frac{1}{x}}-arctan{\frac{2}{\sqrt[3]{x^4}}}}{sin{\frac{3}{x^3}}-arcsin{\frac{2019}{x}}}

[分析]:

because:limxarctan2x43tan31x2x431x3=therefore:arctan2x43tan31xin a similar way:arcsin2019xsin3x3therfore:original formula=arctan2x43arcsin2019x=0\begin{aligned} because : \\ & \lim_{x \to \infty} {\frac{arctan{\frac{2}{\sqrt[3]{x^4}}}}{tan^3{\frac{1}{x}}}} \overset{洛必达}{\Longrightarrow} \frac{\frac{2}{\sqrt[3]{x^4}}}{\frac{1}{x^3}} = \infty \\\\ therefore :\\ & arctan{\frac{2}{\sqrt[3]{x^4}}} \ggg tan^3{\frac{1}{x}} \\\\ in\ a\ similar\ way: \\\\ & arcsin{\frac{2019}{x}} \ggg sin{\frac{3}{x^3}} \\\\ therfore:\\ & original\ formula = \frac{arctan{\frac{2}{\sqrt[3]{x^4}}}}{arcsin{\frac{2019}{x}}} = 0 \end{aligned}

[注]:
高阶无穷小可舍去。原因:0.01 + 0.000001 ~ 0.01 ,因此,可以舍去那个极小的值。