求
x→0limx2e(1+x)x1−(1+x)xe
解答:
记:有:则:y=xln(1+x)x→0limy=1y’=−x2ln(1+x)+x(1+x)1x→0limdxdy=x→0limy′=−21
所以:原式=x→0limx2eey−eey=x→0lim2xeey+y−eey+1⋅dxdy=x→0lim4xeey+1−eey+y=x→0lim4eey+1edxdy−eey+y(eydxdy+dxdy)=x→0lim4eey+1e⋅(2−1)−eey+y(ey⋅(2−1)+2−1)=y→1lim4ee+1⋅e⋅(2−1)−ee+1⋅e⋅(2−1)−ee+1⋅(2−1)=8ee+1